
Runoff response to spatial variability in precipitation: an analysis

of observed data

Michael B. Smitha,*, Victor I. Korena, Ziya Zhanga, Seann M. Reeda,
Jeng-J. Panb, Fekadu Moredaa

aHydrology Laboratory, Office of Hydrologic Development, WOHD-12 NOAA/National Weather Service,

1325 East–West Highway, Silver Spring, MD 20910, USA
bCenters for Medicare and Medicaid Services, 7500 Security Blvd, Baltimore, MD 21244, USA

Received 7 May 2003; revised 9 October 2003; accepted 29 March 2004

Abstract

We examine the hypothesis that basins characterized by (1) marked spatial variability in precipitation, and (2) less of a

filtering effect of the input rainfall signal will show improved outlet simulations from distributed versus lumped models. Basin

outflow response to observed spatial variability of rainfall is examined for several basins in the Distributed Model

Intercomparison Project. The study basins are located in the Southern Great Plains and range in size from 795 to 1645 km2. We

test our hypothesis by studying indices of rainfall spatial variability and basin filtering. Spatial variability of rainfall is measured

using two indices for specific events: a general variability index and a locational index. The variability of basin response to

rainfall event is measured in terms of a dampening ratio reflecting the amount of filtering performed on the input rainfall signal

to produce the observed basin outflow signal. Analysis of the observed rainfall and streamflow data indicates that all basins

perform a range of dampening of the input rainfall signal. All basins except one had a very limited range of rainfall location

index. Concurrent time series of observed radar rainfall estimates and observed streamflow are analyzed to avoid model-specific

conclusions. The results indicate that one basin contains complexities that suggest the use of distributed modeling approach.

Furthermore, the analyses of observed data support the calibrated results from a distributed model.
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1. Introduction and problem description

Several reasons exist for the application of

distributed hydrologic models to a basin. To begin,

such approaches offer the opportunity to model

processes such as water balance, non-point sediment

and pollution transport, and discharge at points

upstream of the basin outlet. Moreover, distributed

models can take advantage of the expanding number

of new and emerging spatial data sets made possible

by geographic information system capabilities and

sensors aboard aircraft and satellites. A major reason

for the use of distributed approaches is the hypothesis
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that by accounting for the spatial variability of

rainfall and physical features within the basin, better

simulations can be achieved at the basin outlet. Many

studies directly or indirectly investigated this hypo-

thesis using models and/or synthetic rainfall data (e.g.

Krajewski et al., 1991; Milly and Eagleson, 1988;

Beven and Hornberger, 1982; Shanholtz et al., 1981;

Wilson et al., 1979). However, recent studies

(Carpenter et al., 2001; Smith et al., 1999; Bell and

Moore, 1998; Seyfried and Wilcox, 1995; Obled et al.,

1994; Pessoa et al., 1993; Naden, 1992) and more

recently the results from Distributed Model Inter-

comparison Project (DMIP) (see Reed et al., 2004,

this issue) suggest that distributed modeling

approaches may not always provide improved outlet

simulations compared to lumped conceptual models.

At least part of the dilemma surrounding the lack of

gains from distributed models may be attributed to

errors in data, model structure, and model parameters

(Koren et al., 2003; Carpenter et al., 2001; Carpenter

and Georgakakos, 2004, this issue). The non-linear-

ities and/or many computational elements in distrib-

uted models may magnify rather than smooth errors in

high-resolution radar rainfall data, making it difficult

for distributed models to outperform a well-calibrated

lumped model in cases of uniform precipitation.

More subtly, another aspect of this conundrum is

that many of the past studies on the importance of the

spatial variability to basin response relied on simu-

lations and have perhaps implicitly and unduly

stressed model sensitivity and not observed basin

sensitivity (Morin et al., 2001; Winchell et al., 1998;

Obled et al., 1994). For example, both Obled et al.

(1994) and Bell and Moore (2000) noted spurious

simulated hydrograph peaks where none were present

in the observed streamflow. As pointed out by

Winchell et al. (1998) in their review of past studies,

the conclusion has been that runoff-generation is

highly sensitive to the spatial and temporal variability

of rainfall. In their review, however, they identified a

strong bias in the use of the infiltration-excess runoff-

generation mechanism in these sensitivity studies.

Moreover, the few studies that did use the saturation-

excess type of runoff mechanism did not support the

general conclusion from the other modeling studies

regarding the importance of rainfall spatial variability.

The work by Winchell et al. (1998) seems to confirm

the model results and postulates of Obled et al. (1994).

In their attempt to capture the spatial variability of

precipitation, Obled et al. (1994) observed that their

model sometimes responded to a rainfall event which

the basin ignored or dampened. Obled et al. (1994)

highlighted the problem of how well a model

structure and parameters fit the real system when

making conclusions from simulation studies. Further-

more, they noted that in medium sized catchments

(from 100 to a few 1000 km2), most proofs for the

significance of the rainfall pattern were based on

synthetic studies. They went on to suggest that if the

dominant runoff-generation process is of the Dunne

type rather than the Hortonian, then most of

the rainfall infiltrates and will be smoothed out as

the water is stored and delayed in the soil layers. As

an example, Milly and Eagleson (1988) found that

when the infiltration-excess mechanism is dominant,

then the rainfall/runoff process is highly sensitive

to storm scale.

Arnaud et al. (2002) tried to avoid conclusions based

on specific runoff-generation mechanisms by using a

distributed model with three rainfall-runoff schemes. In

a study with observed rainfall applied to fictitious

basins, they concluded that runoff volumes and peak

flows can vary considerably between spatially uniform

and spatially distributed rainfall patterns.

Yet, another aspect of this puzzle (and one we

investigate here) is that perhaps the spatial variability

and organization of rainfall, while present, may not be

great enough to produce variability in the observed

basin response. As Obled et al. (1994) stated:

“In fact, it seems that the spatial variability of

rainfall, although important, is not sufficiently

organized in time and space to overcome the effect

of smoothing and dampening when running off

through this rural medium sized catchment”.

Several other studies have examined the spatial

variability of rainfall in the context of overcoming the

dampening action of a basin. Bell and Moore (2000)

explored this issue by comparing the sensitivity of

basin runoff to two types of rainfall events. The

authors found much greater runoff variability for

convective as opposed to stratiform rainfall, noting

the significant dampening and reduced runoff

variability during stratiform events. Woods and

Sivapalan (1999) noticed the failure of substantial
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spatial variations of rainfall in ðx; yÞ coordinates to

impose any significant influence on the variability in

the timing of catchment response. They attributed this

to the limited variability of rainfall with flow distance

from the basin outlet. In her examination of the

Thames River basin, Naden (1992) found that the

hillslope response was dominant over the channel

routing response and masked any effect of the marked

spatial variability of rainfall. Apparently, the large

proportion of chalk and limestone in the catchment

caused the hillslope dominance. Runoff moving

through the catchment had a much longer residence

time in the hillslope component versus the channel

system. Catchment response functions for seven

events were very similar despite observed spatial

variability in precipitation. She concluded that a semi-

distributed modeling approach did not provide a

significant improvement over a lumped model applied

to this 7000 km2 catchment.

In light of these recent studies, it does not appear

sufficient to simply determine where great spatial

variability of rainfall and physical basin character-

istics exists, but to identify basins in which the

variability of rainfall forcing overcomes any filtering

by the physical basin to result in significant variability

of the basin response. Perhaps when this latter

condition is met, distributed models can be shown to

reliably improve upon lumped model results.

We provide an overview of the paper as follows. In

Section 2, we develop our hypothesis and define the

limits of our study. Following this, we briefly discuss

the data in Section 3. In Section 4, we develop three

indices based on observed data. A brief overview of

wavelet analysis is also provided. In Section 5, we

evaluate various combinations of the indices of spatial

variability and basin filtering, followed by the analysis

of the National Weather Service (NWS) distributed

and lumped model simulations. We state our study

conclusions in Section 6, and make recommendations

for further study in Section 7.

2. Purpose and scope

Given the effort to implement a physically based

distributed model, and the emerging reality that

distributed model may not improve upon lumped

models in all cases (Seyfried and Wilcox, 1995), it is

important to determine in which basins the spatial

variability of rainfall results in corresponding varia-

bility in outflow response (Bell and Moore, 2000). In

this paper, we analyze observed rainfall and stream-

flow to describe the spatial variability of rainfall and

corresponding basin outflow response in order to

make inferences about model applicability, specifi-

cally, the need for distributed versus lumped models.

We exclude effects of model error as well as data and

parameter uncertainty.

Based on the conclusions of Obled et al. (1994) and

other discussions in Section 1, we formulate the

following hypothesis:

Basins characterized by (1) spatial variability of

precipitation and (2) less filtering of the rainfall

signal will be more amenable to distributed

modeling.

Here, we define ‘amenable’ to mean that the

distributed model provides improvement over a

lumped model for basin outlet simulations. To test

this hypothesis, we propose several indices for

quantifying observed basin outflow sensitivity and

spatially variable precipitation. Rather than using

a model to evaluate a basin’s response to

spatially variable precipitation, we follow the intent

of Jakeman and Hornberger (1993) and attempt to

determine:

“what reliable information may reside in concur-

rent observed precipitation-streamflow measure-

ments for assessing the dynamic characteristic of

catchment response”

We develop diagnostic (rather than prognostic)

indicators that in combination, can be used to

formulate inferences on the nature of a basin’s

response. As much as possible, these indices are

derived from observed data in order to avoid model-

specific conclusions.

Using these diagnostic indices, we then attempt to

answer the question: ‘Does the combination of the

computed indices and the distributed and lumped

simulations from DMIP support our hypothesis?’

While we stress the analysis of observed precipi-

tation/streamflow data, we recognize that to fully

evaluate our hypothesis, we cannot avoid the use of
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distributed and lumped model simulations. Therefore,

we recognize that our conclusions are at least in part

model-specific. Nonetheless, we argue that our

emphasis on using observed data to first quantify

basin outflow sensitivity has merit.

The analyses herein are limited to the mid-to-large

size basins within the DMIP study area. Smith et al.

(2004, this issue) provide a discussion of the study

basins. In addition, we rely on others (Carpenter and

Georgakakos, 2004, this issue; Carpenter et al., 2001)

to comment on the effects of data and model

parameter errors when evaluating lumped and dis-

tributed modeling results.

3. Data

We limit our study to the data pertinent to the

DMIP project. Provisional hourly observed discharge

data from the US Geological Survey (USGS) and

placed on the DMIP web site were used. We use the

gridded 4 km resolution NEXRAD data also provided

on the DMIP website. Numerous studies have

investigated the quality of these rainfall data for

hydrologic modeling. The interested reader is referred

to Smith et al. (2004, this issue), Reed et al. (2004, this

issue), Guo et al. (2004, this issue), Young et al.

(2000), and Wang et al. (2000) for more information.

We use the hourly, gridded NEXRAD rainfall

estimates to compute two indices of rainfall spatial

variability. To compute the basin filtering index, the

NEXRAD 4 km radar rainfall estimates were pro-

cessed to create hourly time series of mean areal

rainfall over each of the study basins. These mean

areal time series were the same used to generate the

lumped model simulations for DMIP.

As discussed earlier, we rely in part on model

simulations to evaluate our hypothesis. We use the

calibrated NWS distributed model results submitted to

DMIP (see Reed et al., 2004, this issue), as well as the

calibrated simulations from the NWS lumped model

used as a standard in DMIP (Smith et al., 2004, this

issue).

In this study, we analyze three DMIP basins,

named after their respective USGS gage locations:

Baron Fork at Eldon, Oklahoma; the Illinois River at

Watts, Oklahoma, and the Blue River at Blue,

Oklahoma. Hereafter, we refer to these basins as

Eldon, Watts, and Blue, respectively.

4. Methodology

In this section, we explore the comments by Obled

et al. (1994) regarding the conditions that rainfall

must have both spatial variability and significant

organization in order to overcome basin filtering to

produce variability in outflow response. The analyses

herein benefits from the use of high-resolution gridded

radar rainfall estimates and corresponding hourly

streamflow observations available through the DMIP

project. We develop a specific index for general

rainfall organization, rainfall variability, and

variability in the basin outflow response.

4.1. Measures of rainfall variability

4.1.1. Index of rainfall location

This index quantifies the location of storms

independent of intrastorm spatial variability of

precipitation. Here, we attempt to describe the

variability of rainfall versus channel flow distance as

emphasized by Woods and Sivapalan (1999) and to

investigate the spatial organization of rainfall (as

opposed to rainfall spatial variability) as called for by

Bell and Moore (2000)

To derive this index, we modify the rainfall

centroid ratio proposed by Wei and Larson (1971)

so that distance is measured along flow paths to the

outlet and not in Euclidean coordinates. For this study,

flow paths were estimated using a grid network at the

resolution of the 4 km NEXRAD cells. The 4 km

network was derived by generalizing information in a

30 m DEM (Reed, 2003). Based on gridded rainfall

data shown in Fig. 1, a center of rainfall mass for each

time step can be calculated in Eq. (1).

Cpcp ¼

XN

i¼1
PiAiLiXN

i¼1
PiAi

ð1Þ

where Pi is rainfall amount at grid i; Li is the distance

of grid i to the basin outlet, Ai is the area of grid i; and

N is the total number of grid cells within the basin.

Distance Li is measured along overland and catchment

flow paths defined by DEM analysis. Grid area Ai is

retained in Eq. (1) to remind the reader that the area of

each NEXRAD grid cell varies slightly with latitude.

The unique area of each grid cell is used in the

computation of this index and in the distributed model
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developed by the NWS Hydrology Laboratory and

used in DMIP.

A basin’s center of mass Cbsn can be calculated by

the same way as above, except that Pi ¼ 1: The

rainfall centroid ratio for each time step can then be

expressed as a dimensionless index using Eq. (2):

Ipcp ¼
Cpcp

Cbsn

ð2Þ

For a specific time, if Ipcp , 1; then the heavier

rainfall for this time step is generally located at the

region closer to the outlet. Values greater than 1.0

indicate that the center of rainfall is away from the

outlet. Ipcp values near 1.0 imply that the rainfall is

concentrated near the basin centroid.

For a specific event, the flow response is from

many hours of rainfall before and possibly during the

runoff. A location index (weighted rainfall centroid

ratio) for a rainfall event of length T hours can be

determined by weighting the rainfall amount during

the period as:

IL ¼

XT

t¼1
Ipcp;tPtXT

t¼1
Pt

ð3Þ

where Ipcp;t is the rainfall location index for one time

step t; and Pt is the spatially averaged rainfall amount

for the same time step.

4.1.2. Index of general rainfall variability

To quantify intrastorm rainfall variability, we

propose a general rainfall variability measure:

st ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

P2
i

N
2

XN
i¼1

Pi

 !2

N2

vuuuut
ð4Þ

where all notations are the same as in the discussion of

the locational index C. The quantity st is basically the

standard deviation of the hourly gridded NEXRAD

rainfall estimation covering a basin. Analogous to the

index IL; the index of rainfall variability over the

entire flood event can be estimated as a weighted

value Is:

Is ¼

P
stPtP
Pt

ð5Þ

4.1.3. Measures of basin dampening

Corresponding to the measures of rainfall spatial

variability, we seek an index of outflow hydrograph

variability. Here, we define outlet hydrograph varia-

bility in terms of the amount of filtering or dampening

performed on the input rainfall signal as shown in

Fig. 2. This cross-analysis characterizes the trans-

formation of an input signal into an output signal

(Padilla and Pulido-Bosch, 1995). The shape of the

output hydrograph is the result of the combined effects

of all watershed processes such as interception,

depression storage, infiltration, overland flow, storage

and movement of water in the soil, and channel flow

attenuation given the antecedent moisture conditions.

Moreover, the effects of spatial variability of

precipitation are implicitly present in the transform-

ation in Fig. 2.

Others have analyzed hydrologic systems in terms

of the filtering of the rainfall signal. Kisiel (1969)

described a basin as a system that filters the high-

frequency components of the input by smoothing out

the amplitude of the rainfall. Padilla and Pulido-Bosch

(1995), Angelini (1997), Larocque et al. (1998), and

Labat et al. (2000a,b) used signal analysis techniques

to describe the filtering aspects of karst aquifers. Shah

et al. (1996) acknowledged that basins generally act to

smooth or integrate rainfall in both time and space,

and stated that the complex relationships between the

degree of spatial variability of rainfall, basin physical

Fig. 1. Illustration of the rainfall location index. Shaded cell is the

basin flow path centroid. The X cell has a location index greater than

1.0, as it is farther from the basin outlet than the centroid.
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properties, antecedent moisture, and other factors are

poorly understood. They went on to suggest that

physically based distributed modeling systems could

be used to explore these relationships. With their

suggestions, however, they cautioned that these

models can only be used given that accurate estimates

of rainfall spatial distribution are available and the

distributed model realistically represents the pro-

cesses occurring naturally in the basin. Morin et al.

(2002) studied the smoothing effects of the basin on

the rainfall signal in order to define a new character-

istic descriptor termed the response time scale (RTS)

of a basin. The RTS is determined by averaging the

rainfall signal over increasingly longer intervals, so

that the time interval range providing a smoothed

rainfall signal with the best correlation to the runoff

response is the RTS. The RTS analysis results in a

rather coarse, but robust, range of values rather than a

singular value for an individual event. Morin et al.

(2003) applied the RTS concept to individual hydro-

logical processes.

Here, like Morin et al. (2002), we avoid the

question of the model ‘correctness’ raised by several

authors (e.g. Berger and Entekhabi, 2001; Morin et al.,

2001; Shah et al., 1996; Larson et al., 1994; Obled

et al., 1994) and instead concentrate on the analysis of

observed data to derive a descriptive index of basin

dampening. For the input signal, we chose the time

series of basin mean areal hourly rainfall computed

from the NEXRAD radar rainfall estimates, while

hourly observations of basin outlet discharge from the

USGS are used as the output signal.

Clearly, the use of time series of basin mean areal

rainfall may be questioned in a study on the spatial

variability of precipitation. However, we caution the

reader to note that the mean areal time series is used

only as a measure of the volume per time input of the

rainfall into the system. We rely on the indices IL and

Is to explicitly describe the spatial variability of

precipitation. Most importantly, as shown later, we

examine relationships amongst the three indices as the

basis for inferences rather than relying on a single

index to derive conclusions. Moreover, our analysis is

not unlike that of Morin et al. (2002), who used mean

areal rainfall values from radar time series in the

computation of the RTS. They showed that mean areal

values were probably appropriate for the small size

(10–50 km2) basins used in their study, even though

some degree of smoothing may have already taken

place. In our case, the use of mean areal averages of

precipitation may be more critical given the spatial

averaging of radar rainfall over larger basins sizes as

seen in Fig. 2 of Finnerty et al. (1997). However, as

this is an initial study, the use of basin mean areal

precipitation values is probably valid for evaluating

the use of the derived indices for making inferences

about basin behavior. We discuss using other

representations of the rainfall signal in Section 7.

Concepts from the relatively recent development

of wavelet analysis are adapted to derive a single

quantitative index that measures the amount of

dampening of the input rainfall signal as it is

transformed into runoff at the basin outlet as shown

in Fig. 2. While other measures have been used to

assess runoff variability (Bell and Moore, 2000;

Woods and Sivapalan, 1999; Ogden and Julien,

1993), we explore wavelet transforms to derive a

composite measure of rainfall signal dampening for

Fig. 2. Transformation of the input signal (rainfall hyetograph) to output signal (discharge hydrograph). Two output signal responses

are illustrated.
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an event. We seek a diagnostic measure which

represents the effects of all the processes beginning

in time with the onset of rainfall and ending with the

passing of the hydrograph recession limb at the basin

outlet. This is in contrast to the RTS statistic (Morin

et al., 2002), which uses the time duration of only the

rising limbs of the rainfall hyetograph or discharge

hydrograph.

Wavelet transformation represents the next step

beyond a windowed Fourier transform in the analysis

of times series. Like Fourier transforms, wavelet

analysis reveals structures that may not be evident in

the data when plotted in time–amplitude space. As

Fourier analysis consists of decomposing signals into

constituent sinusoids, wavelet analysis is the breaking

up of a signal into scaled and translated versions of the

original (or mother) wavelet. A wavelet transform-

ation is a series of bandpass filters of the time series.

Wavelets allow for long time periods where more

precise low-frequency information is needed, and

short time windows when detailed information is

required. Wavelet analysis has gained in utility as

seen by the rainfall decomposition work of Kumar and

Foufoula-Georgiou (1990, 1993) and Smith et al.

(1998) who used discrete wavelet transforms to

characterize a number of rivers in five climatic

regimes and to identify features not readily detected

by Fourier analysis. Saco and Kumar (2000) extended

this work by providing a comprehensive understanding

of streamflow variability throughout the coterminous

United States. Cahill (2002) used a wavelet-based test

to identify changes in streamflow variance. While a

detailed description of wavelet analysis is well

beyond the scope of this paper, a brief overview

here is necessary to explain our use of wavelet scale to

derive a basin-event descriptor. Interested readers are

referred to Torrence and Compo (1998) for more

background. Gaucherel (2002) provides an excellent

figure describing the correspondence of wavelets of

various scales to different segments of a hydrograph.

The continuous wavelet transform of a discrete

function or signal is defined as the convolution of the

signal sðtÞ with scaled and translated version of

the function g; called the mother wavelet, as shown in

Eq. (6) (Meyers et al., 1993; Smith et al., 1998):

Wsðb; aÞ ¼
1ffiffi
a

p
ðþ1

21
g

t 2 b

a


 �
sðtÞdt ð6Þ

where Ws is the transformation of the signal or

function sðtÞ; a is a scaling or dilation parameter, b is a

location or translation parameter, t is time or distance,

and g is the mother wavelet. Scaled and translated

versions of the mother wavelet are called daughter

wavelets or simply wavelets. Eq. (6) is known as a

continuous wavelet transform since parameters a and

b may be varied continuously. In discrete wavelet

analysis, a and b are varied as powers of 2 (the

so-called dyadic scales). Parameter b corresponds to

time or position if a signal is a function of time or

space, respectively, while a is related to scale or

temporal period. The result of the wavelet transform-

ation in Eq. (6) is a number of coefficients Wsðb; aÞ

which represent a local measure of the relative

amplitude of activity at ðb; aÞ and combines infor-

mation on both the signal and wavelet. Convolution of

a signal sðtÞ of length N with a set of M scaled

wavelets results in an array of M magnitude vectors,

also of length N: Plotting these M scaled vectors on a

coordinate system of scale a versus time or position t

results in a wavelet scalogram of size M £ N:

In wavelet analyses, the choice of the mother

wavelet is an important step, with the mother wavelet

resembling the data as closely as possible (Smith et al.,

1998; Lau and Weng, 1995; Weng and Lau, 1994).

We follow the strategy of Gaucherel (2002) and Smith

et al. (1998) and use the Mexican Hat wavelet as

shown in Fig. 3 to analyze the hourly streamflow.

We select the same waveform to analyze the hourly

time series of mean areal rainfall derived from

NEXRAD 4 km £ 4 km gridded rainfall estimates.

An early comment regarding wavelet analysis was

that it is apparently difficult to generate quantitative

Fig. 3. Normalized approximations of the ‘Mexican Hat” wave form

showing the dilation that occurs as the scale a increases from 1 to 5.
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results (Torrence and Compo, 1998; Meyers et al.,

1993). Often, studies visually compared contoured

plots of the wavelet coefficients to note the difference

between signals (e.g. Weng and Lau, 1994). Labat

et al. (2000b) used wavelet analysis to make

qualitative statements about the filtering of high-

frequency rainfall components by a karstic basin. In

particular, the authors performed a wavelet decompo-

sition of a single isolated rainfall-runoff event, leading

to qualitative statements about the agreement between

the large-scale (low-frequency) components of the

rainfall and runoff signals. This latter analysis

appears, at least on the surface, to provide the same

smoothing effect as that seen in the work of Morin

et al. (2002) for the computation of a basin RTS.

In our analysis, we go further to define a

quantitative index that describes the variability in

streamflow discharge in terms of filtering of the

rainfall signal for an event. We base this index on the

interpretation that the wavelet coefficients in the MxN

transform matrix correspond to the correlation

between the wavelet and the signal.

To derive the discharge variability index, the

M £ N transform of the signal sðtÞ is scanned to

locate the maximum wavelet coefficient at each time t;

indicating the global ‘spine’ of the matrix. The points

forming the spine correspond to the maximum

correlation between the signal and wavelet. Meyers

et al. (1993) analyzed points along the spine of several

transformed signals to compute the dispersion of

Yanai ocean waves. Here, we locate the minimum

scale of the spine in the region of the hydrograph or

hyetograph. We interpret this scale as the amount of

dilation of the mother wavelet needed to achieve the

best fit between the wavelet and the signal. Fig. 3

shows the dilation of the wavelet as the scale a

increases. Moreover, we interpret this minimum

wavelet scale to be a characteristic descriptor of the

signal in this region.

Another way to interpret maximum wavelet

coefficients along the spine is that these are the scales

that have the highest energy at their corresponding

time. In other words, the maximum coefficients

represent the scales that contribute most significantly

to the streamflow hydrograph at each of the

corresponding hydrograph ordinates.

We define the variability in the observed discharge

hydrograph by relating it to the rainfall by proposing

the event dampening ratio in Eq. (7):

Rd ¼
min_scaledischarge

min_scalerainfall

ð7Þ

where min_scaledischarge and min_scalerainfall are the

minimum wavelet scales of the spine in the region of

the event hydrograph and hyetograph, respectively.

Large values of Rd indicate a relatively greater

amount of dampening of the rainfall input signal.

Like the RTS statistic developed by Morin et al.

(2002), the Rd statistic defined here has the advantage

of using observed rather than modeled data. More-

over, it is independent of both the magnitude of the

signal and also of the relative timing of the hyetograph

and discharge hydrograph. Lastly, the Rd statistic

avoids the need for baseflow separation, which can be

a subjective process.

We apply this technique to the analysis of

concurrent time series of hourly mean areal rainfall

and observed streamflow for several basins. For this

part of the analysis, we selected rainfall/runoff events

meeting several criteria. First, as much as possible,

isolated events were selected in which rainfall

hyetograph and corresponding discharge hydrograph

needed to have a single peak. Also, we selected events

covering a range of magnitude and initial conditions

in order to understand the range of dampening that

occurs. Using these criteria, we were able to identify

between 20 and 30 events for the Blue, Eldon, and

Watts basins. Time series containing the specific

events were created with length around 1000 h. In

many cases, we were able to extract event time series

of sufficient length. In other cases, we padded the

discharge and rainfall time series with constant values

flow and zeros, respectively, before and after the

event. This step created sufficient room for waveforms

of scale 128 and smaller to pass through without

inducing edge effects which distort the wavelet

coefficients. Subsequent wavelet analysis of these

same events as they appeared in a multiyear time

series led to the same minimum scales in the vast

majority of cases. In the remaining cases, the analysis

picked up the influence of nearby events. In such

instances, we chose to retain the minimum scales from

the event analysis.

As an example of these analyses, consider the storm

event of September 28, 1995 that occurred over the

Blue River Basin. The observed peak discharge for this
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event is 61 cms, while the rainfall occurred over a 5 h

period and totaled 16.6 mm as shown in Fig. 4.

In this case, the Mexican Hat wavelet with scales a

ranging from 1 to 32 was used to transform the

discharge time series. Fig. 5 presents a 3-dimensional

(3D) plot of the absolute value of the wavelet

coefficients computed from the discharge time series.

Time is plotted on the x axis and scale is plotted on the

y axis. The wavelet coefficients rise out of the x–y

plane. It can be seen that a ridge of high coefficient

values is present at approximately t ¼ 450; indicating

a region of good agreement between the discharge

signal and the wavelet form.

The surface in Fig. 5 is then scanned to locate the

maximum wavelet coefficient at each time step,

thereby delineating the transform spine. For ease of

visual interpretation and checking, the surface is

also contoured as a two-dimensional (2D) plot. Fig. 6

presents an enlargement of the contoured region

around t ¼ 450: In addition, the discharge hydro-

graph is plotted at 1/3 scale to help the reader orient

the spine to the original hydrograph. The contours in

Fig. 6 show locations of equal wavelet coefficients,

and confirm the location of the spine, which has a

minimum value of 15. We interpret this to mean

that a Mexican Hat wavelet with a scale of 15 is the

best descriptor of the discharge hydrograph in this

vicinity. In other words, the value of the spine in

Fig. 6 represents physically the scale corresponding

Fig. 5. Absolute value of wavelet coefficients for the observed

discharge, Blue River, September 28, 1995. Wavelet coefficients

rise out of the scale-time plane.

Fig. 6. Contours of wavelet coefficients for the Blue River event of

September 28, 1995. The contours show a maximum around time

460 h. The spine of the matrix is plotted in black and shows a

minimum scale of 15. The hydrograph (ordinates divided by 3) is

plotted for clarity using the same y axis scale as the wavelet scale.

Fig. 7. Absolute value of the wavelet coefficients for the rainfall

signal, Blue River, September 28, 1995 event.

Fig. 4. Observed rainfall hyetograph and outlet hydrograph for

example computation of dampening ratio.
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to the highest frequency among the scales that have

highest energy at each time step. Also, the scale

from Fig. 6 represents the scale that contributes the

most (in a sense) to the high-frequency of the

corresponding hydrograph signal.

Similar analyses are performed on the hourly time

series of mean areal rainfall for the September 28,

1995 event. The corresponding 3D and contour plots

are shown in Figs. 7 and 8, respectively. The resultant

value of the dampening ratio Rd is 15/2 or 7.5.

We provide an independent check of our method

of wavelet analysis of isolated rainfall hyetographs

and discharge hydrographs. Because of the single-

peaked nature of these event signals, we seek to

ensure that the analyzing wavelet filters out

the requisite frequency range of the rainfall or

discharge signal. To check our use of wavelets in

this case, we compare the power spectral densities

(PSDs) of the signal and the corresponding ‘best

fit’ dilated wavelet. The PSDs of the best fit

wavelet and the signal should peak in the same

frequency range for the wavelet analysis to have

physical meaning.

For this analysis, we select the rainfall event of

October 9, 1994. PSD functions were computed for

both the best fit (scale 3) Mexican Hat wavelet and

mean areal rainfall hyetograph. In both cases, the time

series length was 64 h and the maximum lag was 20 h.

Following the method presented in Kisiel (1969, see

pp. 79–83) and later Torrence and Compo (1998),

confidence limits for both the hyetograph and

Mexican Hat power spectra were derived using a

white noise null continuum. A white noise spectrum

was used as a null continuum whose spectral density

was constant and equal to the average of the values of

all spectral estimates in the computed spectra of the

Mexican Hat wavelet or hyetograph. 95% and 5%

confidence limits were estimated from a x2 distri-

bution with six degrees of freedom ðy ¼ ð2N 2 k=2Þ=k;

where y is the degrees of freedom, N is the time series

length, and k is the number of time lags). Fig. 9

displays the PSD plots for the rainfall hyetograph of

October 9, 1994 and the best fit wavelet (scale 3). It

can be seen from Fig. 9 that there is good frequency

correspondence between the statistically significant

power for both signals.

Fig. 9. Power Spectral Density plots of the rainfall for the October 9,

1994 event (bottom) and the corresponding ‘best fit’ Mexican Hat

waveform of scale 3 (top). Shaded areas show that the majority of

the statistically significant variance or power (.95%) for both

curves lies within the same frequency band.

Fig. 8. Contours of wavelet coefficients for the rainfall hyetograph

for the Blue River event of September 28, 1995. The spine of the

matrix is plotted in black and shows a minimum scale of 2. The

rainfall hyetograph is plotted for clarity using the same y axis scale

as the wavelet scale.
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5. Results and discussion

5.1. Analysis of observed rainfall and streamflow

In this section, we compute the indices described in

the previous sections in order to understand the nature

of the rainfall variability and its effect on the basin

outlet discharge variability. These indices are com-

puted for 23, 25, and 31 rainfall/discharge events for

Watts, Eldon, and Blue, respectively.

Fig. 10 presents the relationship between the

locational variability and general variability of rain-

fall for the three basins using the events selected for

wavelet analysis. For basin Watts, the data points fall

within a very narrow range of IL; say 0.95–1.1. Basin

Watts also exhibits the smallest range of Is; with all of

the data points falling below a value of 8 for Is: With

the exception of one data point, basin Eldon exhibits a

range of IL values nearly as narrow as Watts.

However, basin Eldon exhibits the largest range of

general variability, with Is values extending to almost

16 mm. It should be noted that its range is

characterized by a large gap between a solitary point

at Is of about 16 and the next largest Is value of 10. In

contrast to Watts and Eldon, basin Blue shows a very

Fig. 10. Location index versus general variability index for three

basins.

Fig. 11. Scatter plot of minimum wavelet scales for three basins.

Fig. 12. Scatter plot of dampening ratio Rd versus general rainfall variability Is:
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broad range of locational variability, with values of IL

extending from 0.5 to over 1.3. Based on the events

plotted in Fig. 10, we can suggest that basin Watts

contains the most spatially uniform rainfall patterns,

followed by basin Eldon. The rainfall for basin Blue is

the most spatially variable. It may be that data points

outside these ranges exist for each basin, but did not

meet the selection criteria for the wavelet analysis.

Fig. 11 can be used to describe the dampening

performed by each basin. This figure displays the

relationship between the wavelet scales characterizing

the input rainfall signal and the output discharge

hydrographs for the events in the three basins. While

strong conclusions cannot be made from Fig. 11, it

seems that inferences can nonetheless be suggested.

At precipitation scales of 2, 3, 4, and 5 (corresponding

to higher frequency events) it can be seen that all

basins perform a range of dampening of the input

rainfall shape. In particular, basin Eldon seems to

exhibit a wide range of dampening response at each

rainfall scale. Basin Blue has less of a dampening

effect, indicating that the basin could be more

sensitive to variations in precipitation. For each

rainfall scale, the basin Watts exhibits a range of

dampening nearly as narrow as that of Blue. It is

interesting to note that Blue exhibits a much wider

range of minimum wavelet scales of rainfall than the

other two basins. Similar to Morin et al. (2002), we

make no inferences regarding the reasons for the

dampening (e.g. initial conditions, type of soils,

rainfall/runoff mechanism, routing, etc.).

In Fig. 12, the wavelet scales are combined to form

the dampening ratio Rd and plotted against the index

of general rainfall variability Is: From this figure, it

can be seen that the three basins exhibit a range of the

general rainfall variability index Is: The range of

values along the Rd axis is greatest for Eldon, with

points falling between Rd values of 2–47. Basin Blue

has less of a dampening effect at all values of Is with

only three points having Rd of 15 or greater, again

indicating that the basin could be more sensitive to

variations in precipitation. At each Is scale, Blue

seems to function in the same range or slightly lower

than basin Watts. The mean of the cluster of points for

Blue is slightly lower than Watts (7.4 and 12.3,

respectively). Most importantly, there seems to be no

identifiable or clear relationship between Rd and Is for

the three basins.

Fig. 13 shows the relationship between the

dampening ratio Rd and the index of locational

rainfall variability IL: It is immediately evident that

distinguishable basin behavior is present. It can be

seen from this plot that both Eldon and Watts basins

have a limited range of the index of rainfall location IL

compared to basin Blue. With one exception, all of the

points for basins Eldon and Watts fall within the

bounds of 0:9 , IL , 1:12: Watts may have a slightly

narrower range than Eldon. This range indicates that

the rainfall is typically concentrated near the centroid

of the basins (as defined by the overland and channel

flow paths). Basin Blue exhibits great locational

rainfall variability with values of IL ranging from 0.5

to 1.33. Given the number of events concentrated

between the outlet and centroid of the basin, it seems

unusual that only one event having a locational index

of greater than 1.1 occurred. It is conceivable that

more such events exist, but did not meet the selection

criteria for the wavelet analysis. For Blue, there is a

slight trend for the value of Rd to increase as the

location index increases. This trend seems logical in

that longer flow distance may provide the channel

system more opportunity to attenuate the runoff

hydrograph. It should also be noted that at values of

IL between 0.9 and 1.1, Blue and Watts have a similar

spread of Rd; with Blue having a somewhat smaller

range. For IL values outside this range, Blue has the

smallest dampening effect on the input precipitation.

This response suggests that Blue is sensitive to spatial

patterns in rainfall so that variability in the input

rainfall signal could be translated to variability in the

runoff hydrograph.

Figs. 10–13 clearly show that different manifes-

tations of rainfall variability are present in the three

basins. Moreover, the three basins seem to exert

varied degrees of dampening of the input rainfall

signal. These analyses provide understanding as to

how the basins generally respond to various degrees

of spatial rainfall variability.

5.2. Analyses including DMIP simulation results

In this section, we rely on distributed and lumped

model results to evaluate our hypothesis. As described

by Reed et al. (2004, this issue), the results of DMIP

showed a relative distributed modeling success that

varied from basin to basin. Overall statistics showed
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that in many cases, the lumped model had better

performance than distributed models. However, some

distributed models showed comparable or better

performance for several events. In Fig. 14, we present

a subset of the overall results and examine the gains

from the NWS distributed model (see Koren et al.,

2004) plotted versus the two indices of rainfall spatial

variability for three basins. Distributed model gain is

defined here as the difference in the Rmod statistic

(NWS distributed minus NWS lumped) computed for

the same events in the previous analyses. The Rmod

Fig. 14. Improvement of distributed model over lumped model versus locational variability and general rainfall variability for three basins: Blue

(top), Eldon (middle), and Watts (bottom). The ordinate values are the difference in the event Rmod statistics (NWS distributed–NWS lumped).

The large red dots represent average values within selected ranges of IL and Is:

Fig. 13. Dampening ratio Rd versus rainfall location index IL:
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statistic is a modified correlation coefficient used in the

evaluation of the DMIP results (Smith et al., 2004, this

issue). Positive values on the ordinate indicate gain

from distributed modeling, while negative values

indicate loss of accuracy from distributed modeling.

The large plotting symbols in Fig. 14 represent the

average of the Rmod difference for successive

intervals of Is and IL. The following discussions will

be based on these average values.

From the subplots in Fig. 14, it can be seen that the

distributed model on average provides improvements

over the entire range of Is values for basin Blue. As

one would expect, the distributed model shows more

gains as the IL statistic varies from a value of 1.0,

indicating high locational variability. These results

suggest that the spatial variability of rainfall can be

great enough to violate the conditions for lumped

modeling to such a degree that distributed modeling is

necessary to improve results. Or in the words of Obled

et al. (1994), the rainfall can be sufficiently organized

in space to overcome any filtering and dampening in

the basin. Certainly, the low levels of dampening seen

in Figs. 12 and 13 for Blue support this suggestion.

Fig. 14 also shows the Rmod difference between

lumped and distributed simulations for Eldon. The

results for Eldon show that the distributed model

provided gains for about half the events. In contrast to

Blue, the distributed model does not provide much

improvement over the range of Is values. There is

slight improvement (in an average sense) at Is values

of 4 and 5, but a loss of accuracy at an Is value of

around 12. Like basin Blue, there is some improve-

ment as values of IL increase from 1.0. However, it

should be noted that the average value at IL of 1.36 is

based on a single point. Outside of this one event, the

values of IL cluster around 1.0, indicating that the

rainfall is centered over the basin for the majority of

events selected.

For Watts, distributed modeling provides only

marginal improvement over lumped models at all

ranges of IL and Is values. Fig. 14 shows that any

improvements were smaller than those for Eldon and

Blue, with the difference in Rmod never greater than

0.3. As noted earlier, the range of IL and Is values

shown for Watts is the smallest of the three basins

analyzed, indicating that the rainfall is more uniform.

It is understandable that in such cases of uniform

precipitation, it is difficult for a distributed model to

outperform a well-calibrated lumped model. Even

though Watts behaves nearly the same as Blue in

terms of the range of the dampening ratio Rd; there is

apparently not enough variability in the input rainfall

to generate variability in the basin runoff to the degree

that a distributed model could be easily justified.

Fig. 10 shows that Watts has the most spatially

uniform precipitation of the three study basins. These

results support the event statistics presented in Fig. 4

of Reed et al. (2004, this issue) which show that

the calibrated lumped model performs rather well

for Watts.

Figs. 15–17 further describe the events for which

the NWS distributed model provides improvement. In

these figures, we plot 3D data on 2D scatter plots. Two

plotting symbols are used to denote a percent

improvement gained by distributed modeling: a circle

indicating positive improvements from the NWS

distributed model and an inverted triangle to indicate

negative values of the percent improvement (i.e.

negative gain or degradation of simulation accuracy

as a result of applying the distributed model). The

relative size of the symbols for each basin indicates

the magnitude of the gain or degradation compared to

the NWS lumped model simulation. Comparing the

relative sizes of the circles and triangles in

Figs. 15–17 indicates that for the Blue River,

distributed modeling provides great improvement

for more events than for basins Eldon and Watts.

In Fig. 15, it can be seen again that the

distributed model provides improvement at all

ranges of the indices IL and Is for basin Blue.

Moreover, those events showing improvement are

typically less dampened. With one exception, the

events showing the largest improvement have a

dampening ratio of less than 10. Distributed

modeling does not provide improvements for the

most dampened events. These events have IL values

of around 1.1 and Is values in the range of 3–5,

respectively, indicating that the rainfall is fairly

uniform. As stated earlier, it is usually difficult for a

distributed model to improve upon a well-calibrated

lumped model under these rainfall conditions. The

relative size of the circles compared to the inverted

triangles shows that a distributed model for Blue

provides substantial improvement compared to a

lumped model.
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Figs. 16 and 17 show corresponding results for

basins Eldon and Watts, respectively. As with basin

Blue, it appears that the majority of events most

benefiting from distributed modeling have a relatively

low dampening ratio. Table 1 shows that the mean

dampening ratios for positive distributed modeling

gains are smaller than those for the negative

distributed modeling gains.

6. Conclusions

Various analyses were conducted to evaluate our

hypothesis that basins characterized by (1) significant

spatial variability of rainfall and (2) less filtering of

the rainfall signal will be amenable to distributed

modeling for basin outlet simulations. To avoid

model-specific conclusions, we tried as much as

possible to base our analyses on observed data.

However, we could not avoid using model results in

evaluating our hypothesis.

Two indices of observed spatial rainfall variability

and an index of observed basin filtering were

computed for three basins within the DMIP study

domain. These indices were combined with the results

from the NWS distributed and lumped models used

in DMIP.

Of the three basins and for the events studied, Blue

exhibited the greatest rainfall variability, exhibiting

prominent locational variability and a tendency for the

rainfall patterns to be concentrated between the

centroid and outlet of the basin. Considering both

locational and general rainfall variability, precipitation

for Eldon is the next most spatially variable, followed

by Watts. We stress that more cases in which the

rainfall is concentrated away from the basin centroid

could exist for all three study basins, but did not meet

the single peak event criteria for wavelet analysis.

An attempt was made to understand the filtering

effects of each of three basins on the input rainfall

signal. For this, we developed the event dampening

Fig. 15. Blue River (Blue): relative improvement of the NWS distributed model compared to the NWS lumped model plotted as a function of

dampening ratio versus location index (top) and general variability (bottom). Circles represent improvement, inverted triangles represent

degradation. The size of the plotting symbols shows the relative magnitude.
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ratio Rd; derived through wavelet analysis. The Rd

statistic has the advantage of being computed from

observed data and does not need baseflow separation,

which can be a subjective procedure. Also, this

dimensionless statistic is independent of magnitude

and also the relative timing of the rainfall hyetograph

and discharge hydrograph.

Once again, the basin Blue is distinguishable from

Watts and Eldon, having the lowest event values of

Rd; with a mean Rd of 7.4. Watts and Eldon follow

with mean Rd values of 12.3 and 18.0, respectively.

For Blue, we noticed a prominent trend for all events

at the extremes of the location index IL to be

characterized by relatively low values of the dampen-

ing ratio Rd:

While we were unable to detect threshold values of

the indices Is; IL; and Rd which identify a basin

amenable to distributed modeling, we nonetheless

identified significant differences in the observed basin

behavior. Within the scope of this study, we believe

that our analyses support our hypothesis. We conclude

that basin Blue contains complexities that suggest the

use of distributed models. Improvements were

realized by distributed modeling over the entire

range of storm center location for this basin.

It is interesting to note that basin Watts has the

next lowest average dampening ratio after Blue.

However, Watts had the least spatially variable

rainfall. Based on the events in our study, we

surmise that there is not enough spatial variability

in the Watts rainfall to generate variable basin

responses.

To the degree that the NWS distributed and lumped

models are realistic and well-calibrated, we can

conclude that when the observed rainfall patterns

were more uniform (IL values around 1.0 and

relatively smaller Is values), the distributed model

provided mixed results. In some cases, slight

improvements over lumped model simulations were

realized, in other cases the distributed model showed a

small degradation in simulation accuracy. Not sur-

prisingly, at IL values far from 1.0, significant

Fig. 16. Baron Fork at Eldon (Eldon): relative improvement of the NWS distributed model compared to the NWS lumped model plotted as a

function of dampening ratio and location index (top) and general variability (bottom). Circles represent improvement, inverted triangles

represent degradation. The size of the plotting symbols shows the relative magnitude.
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improvements were realized in the Blue basin and to a

lesser degree in Eldon. Strong relationships between

distributed modeling improvement and values of Is
cannot be seen for any basin.

7. Recommendations

Perhaps the first continuing efforts should focus on

analyzing additional events beyond the scope of the

DMIP calibration and validation periods. More data

points would lead to a clearer understanding of the

extent of rainfall variability and type of basin

behavior. For all basins, it would be helpful to have

more events with values of IL greater than 1.0. Almost

2 years of data are now available beyond the end of

the DMIP validation period. Given more data points,

it would be also useful to stratify the analyses

according to initial conditions, total storm precipi-

tation, storm type, and peak discharge.

During the analysis of the rainfall data for basin

Blue, we noted two trends. First, the rainfall patterns

are such that rainfall rarely covers the entire basin.

Rather than computing a time series of mean areal

rainfall over the entire basin, it would be more

representative to compute a conditional mean areal

average (i.e. over only the rainy area). This would

avoid some of the smoothing shown in Fig. 2 of

Finnerty et al. (1997). Such a conditional analysis

might decrease the minimum wavelet coefficient for

Fig. 17. Illinois River at Watts, OK (Watts): relative improvement of the NWS distributed model compared to the NWS lumped model plotted as

a function of dampening ratio and index of locational variability (top) and general variability (bottom). Circles represent improvement, inverted

triangles represent degradation. The size of the plotting symbols shows the relative magnitude.

Table 1

Mean values of the dampening ratio Rd for the three study basins

Basin Distributed modeling improvement

Positive Negative

Blue 6.6 9.0

Eldon 15.4 20.7

Watts 10.0 12.8

Values are grouped as to whether distributed modeling realized

improvements or losses compared to lumped modeling.
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the precipitation, thereby increasing the dampening

ratio. Second, we observed that many rainfall events

in basin Blue are characterized by storms moving

down the channel toward the outlet. Future work

should include the study of observed storm movement

in the computation of rainfall variability indices.

Other representations of the input rainfall signal

may be necessary. Rather than using mean areal

values for each time step to characterize the rainfall,

perhaps a more refined representation of the rainfall

can be derived from the gridded radar precipitation

estimates.

Continuing the theme of Jakeman and Hornberger

(1993), further analyses of the concurrent time series

of rainfall and streamflow may yield more informative

diagnostic indicators about the potential gain from

distributed modeling. Wavelet decomposition of the

concurrent time series of rainfall and streamflow may

allow us to make inferences about the relative

importance of low- and high-scale (high- and low-

frequency) patterns in the data. Also, the signal

analysis techniques discussed by Padilla and Pulido-

Bosch (1995), Angelini (1997), Larocque et al.

(1998), and Labat et al. (2000a,b) may provide

additional overall descriptions of the input–output

transformation in frequency–amplitude space.

It might also be informative to compute transfer

functions for the events discussed here as well as

additional events. Naden (1992) was able to compute

such functions for seven events and make conclusions

about the variability of the runoff hydrographs as well

as the dominance of the hillslope or channel routing

components. Such an analysis might partially confirm

the wavelet approach applied to events in this study.

We also plan to examine other DMIP basins to gain

a broader picture of how the dominance of locational

and general rainfall may vary with basin scale.

We suspect that locational variability may be

dominant in larger catchments, with general rainfall

variability becoming more important as basin size

decreases.

For those instances in which distributed models are

being considered for many areas, it would be

beneficial to determine beforehand which basins

might benefit most compared to a lumped approach

for outlet simulations. Perhaps diagnostic criteria

could be developed from observed data so as to

identify and prioritize basins for distributed model

implementation. Such a prioritization might realize

the greatest gain for the resources expended. Such

efforts would seem to be most important to agencies

that are transitioning from simpler lumped methods to

distributed models for operational river forecasting.
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